研究興趣
環境中微量氣體之精密自動化分析方法、環境排放源之複雜VOCs特徵解析、臭氧前趨物之特性分析與二次光化污染物之關聯、科學園區及工業區有害揮發性有機污染物之分析、三維無人飛行載具探空技術(MUST)、環境與氣象之智慧空中監測網
代表著作
(SCI Publication=81, Citation: 4731, WOS h-Index=35, Scopus h-index=37)
Chih-Yuan Chang, Jia-Lin Wang, Yen-Chen Chen, Wei-Nai Chen, Sheng-Hsiang Wang, Chuang Ming-Tung, Neng-Huei Lin, Charles C.-K. Chou, Wei-Syun Huang, Li-Jin Ke, Xiang-Xu Pan, Yu-Jui Ho, Yi-Ying Chen, Chih-Chung Chang*. Spatiotemporal characterization of PM2.5, O3, and trace gases associated with east Asian continental outflows via drone sounding. Science of The Total Environment 930, 172732.
Yen-Chen Chen, Jia-Lin Wang, Chih-Yuan Chang, Ming-Tung Chuang, Charles C.-K. Chou, Xiang-Xu Pan, Yu-Jui Ho, Chang-Feng Ou-Yang, Wen-Tzu Liu, Chih-Chung Chang*, (2023).Using drone soundings to study the impacts and compositions of plumes from a gigantic coal-fired power plant. Science of The Total Environment 893, 164709.
Ou-Yang, C.F., Chih-Chung Chang*, Sheng-Hsiang Wang, Charles C.-K. Chou, Ming-Tung Chuang, Tang-Huang Lin, Wei-Nai Chen, Ta-Chih Hsiao, Ming-Cheng Yen, Yueh-Chen Wang, Neng-Huei Lin, Jia-Lin Wang*, (2023). Integrated ground and vertical measurement techniques to characterize overhead atmosphere: Case studies of local versus transboundary pollution. Science of The Total Environment 887,163919.
Chih-Yuan Chang, Jia-Lin Wang, Yen-Chen Chen, Xiang-Xu Pan, Wei-Nai Chen, Ming-Ren Lin, Yu-Jui Ho, Ming-Tung, Chuang, Wen-Tzu Liu, Chih-Chung Chang*, (2022). A study of vertical homogeneity of trace gases in East Asian continental outflow. Chemosphere 297, 134165.
Wen-Tzu Liu, Wei-Cheng Liao, Stephen M. Griffith, Chih-Chung Chang*, Yue-Chuen Wu, Chieh-Heng Wang, Jia-Lin Wang*, (2022). Characterization of odorous industrial plumes by coupling fast and slow mass spectrometry techniques for volatile organic compounds. Chemosphere 304, 135304.
Chih-Chung Chang*, Chih-Yuan Chang, Jia-Lin Wang, Xiang-Xu Pan, Yen-Chen Chen, Yu-Jui Ho, (2020). An optimized multicopter UAV sounding technique (MUST) for probing comprehensive atmospheric variables. Chemosphere 254, 12687.
Chang, Chih-Chung*, Chih-Yuan Chang, Jia-Lin Wang, Ming-Ren Lin, Chang-Feng Ou-Yang , Xiang-Xu Pan, Yen-Chen Chen, 2018. A study of atmospheric mixing of trace gases by aerial sampling with a multi-rotor drone. Atmospheric Environment 184, 254-261.
Chih-Chung Chang*, Jia-Lin Wang, Chih-Yuan Chang, Mao-Chang Liang, Ming-Ren Lin, (2016). Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies. Chemosphere 144, 484-492.
Ou-Yang, Chang-Feng, Chih-Chung Chang*, Shen-Po Chen, Clock Chew, Bo-Ru Lee, Chih-Yuan Chang, Geoffrey S. Dutton, Stephen A. Montzka, James H. Butler, James W. Elkins, Jia-Lin Wang*, 2015. Changes in the Levels and Variability of Halocarbons and the Compliance with the Montreal Protocol from an Urban View. Chemosphere 138, 438-446.
F. Rohrer*, K. Lu, A. Hofzumahaus, B. Bohn, T. Brauers, Chih-Chung Chang, H. Fuchs, F. Holland, K. Kita, Y. Kondo, X. Li, S. Lou, Min Shao, Limin Zeng, Yuanhang Zhang, A. Wahner, (2014). Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nature Geoscience 7, 559–563.
Hofzumahaus, A., F. Rohrer*, K. Lu, B. Bohn, T. Brauers, Chih-Chung Chang, H. Fuchs, F. Holland, K. Kita, Y. Kondo, X. Li, S. Lou, Min Shao, Limin Zeng, A. Wahner, Yuanhang Zhang, (2009). Amplified trace Gas Removal in the Troposphere. Science 324,1702-1704.
Chih-Chung Chang*, Tai-Yih Chen, Chuan-Yao Lin, Chung-Shin Yuan, Shaw-Chen Liu, 2005. “Effects of reactive hydrocarb ons on ozone formation in southern Taiwan”Atmospheric Environment 39, 2867-2878.
Chang, Chih-Chung, Shun-Jin Lo, Jiunn-Guang Lo, and Jia-Lin Wang*, 2003. Analysis of Methyl tert-butyl ether (MTBE) in the atmosphere and implications as an exclusive indicator of automobile exhaust. Atmospheric Environment 37, 4747-4755.
Chih-Chung Chang, Jiunn-Guang Lo, Cheng-Hsiung Tasi and Jia-Lin Wang, (2001). Concentration variation of halocarbons over an electrical industrial park and its implication in compliance with the Montreal Protocol. Environmental Science & Technology, Vol. 35, No 16, pp.3273-3279.
Chih-Chung Chang, Jiunn-Guang Lo and Jia-Lin Wang, (2001). Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternate fuel. Atmospheric Environment 35, 6201-6211.
重要研究與突破
三維無人機探空平台 我們建立及發展三維空間多旋翼無人機探空平台觀測技術(Multicopter UAV sounding platform, MUST),並逐年優化此技術,用以突破環境、氣象與污染等研究於近地表低空空間觀測上之限制,可搭載各式精密的採樣及觀測組件,並具有垂直升降航行觀測、空中定點懸停、自動駕駛、數據即時傳回等特點,對於多種與空間相關之研究及應用,例如環境科學、氣象研究、污染溯源與工安災害之預警或後續污染追蹤等具有高度的應用潛力。此平台特殊及創新性如下:
1.突破傳統觀測方法無法獲得空中“眾多種類且高精準度、低偵測極限之化學組成”(例如106 種VOCs、CO、CO2、CH4 、N2O)之垂直剖面資訊的限制。
2.依不同任務需求,空中採樣觀測平台可選擇搭載不同傳感或偵測模組(例如:高精準度溫度、濕度、壓力、輻射通量、高解析風向、風速、可見及熱影像,以及特定污染物如CO、O3、PM2.5、BC等地面至空中最高1000公尺高之資訊。
3.便捷機動,具有垂直升降航行觀測、空中定點懸停、自動駕駛等特點,可快速部署於不同的研究環境,並迅速地執行空中採樣與觀測任務,多數即時觀測模組可透過無線傳輸及圖形整合,可於地面上觀看天空數據的即時資訊或圖形。
環境及大氣中之微量氣體分析 環境中的微量氣體在空氣污染與氣候變遷中扮演著關鍵性的角色,除了溫室效應氣體(主要如CO、CO2、CH4、N2O),環境中的揮發性有機化合物(VOCs)也具有不等的毒性或致癌性,此外VOCs也為二次空氣污染物臭氧(ozone)與二次有機氣膠(secondary organic aerosols, SOA)之關鍵前驅物。我們實驗室在過去15年內建立性能領先高精準度之上百種複雜VOCs以及CO、CO2、CH4、N2O線上及離線自動化分析方法,並以這些領先的分析技術為基礎配合野外採樣或現地分析,用於獲得環境中微量氣體的化學組成與濃度精確資訊。 VOCs: 包含上百種複雜C2-C11之NMHC及C1以上之VOCs ,其性質涵蓋廣泛的非極性物種(如烷、烯、芳香烴、酯、醚等)及少部分的極性物種(如醇、酮)等。VOCs線上及離線分析自動化氣相層析質譜分析方法(On-line and In-lab GC-MS/FID)特點為、高精密度(1σ: 1%)、低偵測極限(ppt level)以及分析物種廣泛(106 VOCs)。 溫室效應氣體: CH4, CO, N2O, CO2, 臭氧, 鹵碳化物(長生命期)。即時及離線分析之光腔衰盪光譜分析儀(CRDS)分法特點為高精密度(1σ: 2%~0.01%) 。