研究興趣
雲宏觀與雲微物理、雲物理參數化、氣膠-雲-輻射-氣候交互作用、地球系統模式發展、大氣化學模擬、極端降水變遷
代表著作
Shiu, C.-J.* et al., 2022: Examining climatic impacts of the four fast-physics parameterizations of TaiESM1, Technical Report, RCEC, Academia Sinica
Shiu, C.-J.*, Y.-C. Wang, W.-T. Chen, H.-L. Pan, R. Sun, Y.-H. Chen, H.-H. Hsu, and C.-A. Chen, 2021: GTS v1.0: A Macrophysics Scheme for Climate Models Based on a Probability Density Function, Geosci. Model Dev., 14, 177-204, https://doi.org/10.5194/gmd-14-177-2021.
Shiu, C.-J.* et. al., 2018: Modifying Cloud-Related Physical Parameterizations for TaiESM, Technical Report, RCEC, Academia Sinica
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and H.-H. Hsu, (2020). Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887-3904, https://doi.org/10.5194/gmd-13-3887-2020.
Shiu, C.-J., Shaw Chen Liu*, Congbin Fu, Aiguo Dai and Ying Sun (2012): How Much do Precipitation Extremes Change in a Warming Climate? Geophys. Res. Lett., 39, L17707, doi:10.1029/ 2012GL052762.
Liu, Shaw Chen*, Congbin Fu, C.-J. Shiu, Jen-Ping Chen, Futing Wu, (2009): Temperature Dependence of Global Precipitation Extremes, Geophys. Res. Lett., 36, L17702, doi:10.1029/2009GL040218.
Shiu, C.-J., S. C. Liu*, and J.-P. Chen, (2009): Diurnally asymmetric trends of temperature, humidity and precipitation in Taiwan, J. Climate, Vol. 22, No. 21, 5635–5649
Chou, C. C.-K. *, C.-Y. Tsai, C.-J. Shiu, S. C. Liu, T. Zhu, (2009): Measurement of NOy during CAREBEIJING-2006: Implications for the ozone production efficiency of NOx. J. Geophys. Res. 114, Issue D7, CiteID D00G01.
Shiu, C.-J., S. C. Liu*, C.-C. Chang, J.-P. Chen, C. C. K. Chou, C.-Y. Lin, and C.-Y. Young, (2007): “Photochemical Production of Ozone and Control Strategy for Southern Taiwan”, Atmos. Environ., 41, 9324–9340.
關鍵技術及研發
雲微物理對氣候模式中對流雲的模擬很重要
全球氣候模式的對流雲模擬一般都忽略雲微物理過程,或是採用粗略的做法,例如假設固定大小之常數來做雲水轉雨水的估算,我們嘗試將一雙矩量暖雲雲微物理參數法新增到台灣地球系統模式(Taiwan Earth System Model, TaiESM)的積雲參數法中,來模擬對流雲的暖雲與暖雨等物理過程。結果顯示,此參數法的修改能改進許多跟雲與降水有關參數的模擬情形,有考慮暖雲雲微物理的積雲參數法能使熱帶至副熱帶地區的對流降水比率降低,更貼近衛星反演估算的結果,同時進一步使這些區域的層狀雲水、雲冰與層狀降水增加。雲水厚度的空間分佈模擬在定性上也更接近AMSR-E衛星觀測的結果,而經由與CloudSat衛星觀測的比對後,也可發現此修改的參數法,對雲冰(也包括雪)的空間與垂直分佈模擬結果也獲得相當程度之改善,由此模擬結果的改善也顯示,在現今的氣候模式的積雲參數法採用更具物理基礎的方式,來做雲水轉與雨水計算的重要性。造成上述模擬改變的原因是因為採用實際雲微物理過程做雲水物模擬後,對流降水變少,而使得對流雲水逸出到層狀雲的雲水增加,進而使雲水、雲冰與層狀降水增加,此修改的參數法能用來研究全球氣候模式對流雲裡的氣膠-雲-降水交互作用。
我們也發現,在TaiESM模式的積雲參數法增加雲微物理過程亦能改善模式模擬Madden-Julian Oscillation(MJO)東傳的特徵,經過詳盡個別濕物理過程的趨勢項診斷分析,可以推論與所謂的“moisture-stratiform instability”機制有關,而且主要是肇因於修改後的參數法能夠增加MJO對流發生時的層狀降水憯熱釋放。