蔡宜君Tsai, I-Chun

研究興趣

氣膠微物理參數法的發展與應用、氣膠與雲交互作用、氣候與化學交互作用、雲物理與大氣物理化學

 

代表著作

Chen, Y.-C., P.-H. Lin, W.-N. Chen, I-C. Tsai, S. Laplace, C.-C. Ting, C. Fu, Charles, C.-K. Chou, 2022: Decade long-term measurement for investigating vertical thermodynamic of urban boundary layer, Urban Climate, 46, 2022, 101301,https://doi.org/10.1016/j.uclim.2022.101301. 

Tsai, I-C., L.-S. Shu, J.-P. Chen, P.-R. Hsieh, and C.-T. Cheng, 2022: Projecting ozone impact on crop yield in Taiwan under climate warming. Science of the Total Environment, 846(2022), 157437, https://doi.org/10.1016/j.scitotenv.2022.157437.

Tsai, I-C.*, P.-R. Hsieh, C.-T. Cheng, Y.-S. Tung, L.-Y. Lin and H.-H. Hsu, 2022. Impacts of 2 and 4 °C global warmings on extreme temperatures in Taiwan, Accepted by International Journal of Climatology, . https://doi.org/10.1002/joc.7815.

S.-Y. Lee, S.-C. C. Lung, P.-G. Chiu, W.-C. Wang, I-C. Tsai, T.-H. Lin, 2022: Northern hemisphere urban heat stress and associated labor hour hazard from ERA5 reanalysis. Int. J. Environ. Res. Public Health. 2022, 19, 8163. https://doi.org/10.3390/ijerph19138163

Tsai, I-C.*, P.-R. Hsieh, H. C. Cheung, and C. C.-K. Chou, 2021: Aerosol impacts on fog microphysics over the western side of Taiwan Strait in April from 2015 to 2017, Atmospheric Environment, 118523,

Tsai, I-C.*, C.-Y. Lee, S.-C. C. Lung, C.-W. Su, 2021: Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality, Science of the Total Environment, 782(2021), 146571, ISSN 0048-9697.

Lee, W.-L., Y.-C. Wang, C.-J. Shiu, I-C. Tsai, C.-Y. Tu, Y.-Y. Lan, J.-P. Chen, H.-L. Pan, and H.-H. Hsu, 2020: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904.

Zhang, L., T.-M. Fu, H. Tian, Y. Ma, J.-P. Chen, T.-C. Tsai, I-C. Tsai, Z. Meng, X. Yang. 2020: Anthropogenic Aerosols Significantly Reduce Mesoscale Convective System Occurrences and Precipitation over Southern China in April, Geophysical Research Letters. 47, e2019GL086204.

Wu, C.-H., I-C. Tsai, P.-C. Tsai and Y.-S. Tung, 2019: Large-Scale Seasonal Control of Air Quality in Taiwan, Atmospheric Environment, 214, 116868.

Huang C.-C., S.-H. Chen, Y.-C. Lin, K. Earl, T. Matsui, H.-H. Lee, I-C. Tsai, J.-P. Chen, C.-T. Cheng, 2019: Impacts of Dust-Radiation versus Dust-Cloud Interactions on the Development of a Modeled Mesoscale Convective System over North Africa.  Monthly Weather Review, 147, 3301–3326.

Tsai, I-C.*, W.-Y. Chen, J.-P. Chen, and M.-C. Liang, 2019: Kinetic mass-transfer calculation of water isotope fractionation due to cloud microphysics in a regional meteorological model, Atmos. Chem. Phys., 19, 1753-1766.

Lung, S.-C., S.-W. Chou, J.-P. Chen, P.-C. Wen, H.-J. J. Su, I-C. Tsai, and Y.-S. Shen, 2018: Science Plan of “Climate Change and Health Adaptation”, Journal of Taiwan Land Research, 21, 2, 209-239 (in Chinese).

Tsai, I-C.*, W.-C. Wang, H.-H. Hsu, and W.-L. Lee, 2016: Aerosol effects on summer monsoon over Asia during 1980s and 1990s, J. Geophys. Res. Atmos., 121, 1176111776,.

Chen, J.-P*, I-J. Chen and I-C. Tsai, 2016: Dynamic feedback of aerosol effect on the East Asian summer monsoon. Journal of Climate, 29(17):6137-6149.

Li, N., J.-P. Chen, I-C. Tsai, Q. He, S.-Y. Chi, Y.-C. Lin, and T.-M. Fu, 2016: Potential impacts of electric vehicles on air quality in Taiwan.  Science of the Total Environment, 566-567(2016), 919-928.

Tsai, I-C., J.-P. Chen*, C. S.-C. Lung, N. Li, W.-N. Chen, T.-M. Fu, C.-C. Chang, and G.-D. Hwang, 2015: Sources and formation pathways of organic aerosol in a subtropical metropolis during summer.  Atmospheric Environment, 117, 51-60.

Tsai, I-C., J.-P. Chen, Y.-C. Lin, C C.-K. Chou, and W.-N. Chen, 2015: Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts. Journal of Geophysical Research: Atmospheres, 120, 9, 4313-4233, doi:10.1002/2014JD022899.

Chen, J.-P.*, C.-E. Yang and I-C. Tsai, 2015: Estimation of foreign versus domestic contributions to Taiwan's air pollution. Atmospheric Environment, 112,9-19, doi:10.1016/j.atmosenv.2015.02.022.

Lin, Y.-C., J.-P. Chen*, T.-Y. Ho and I-C. Tsai, 2015: Atmospheric Iron deposition in the Northwestern Pacific Ocean and its Adjacent Marginal Seas: the Importance of Coal Burning. Global Biogeochemical Cycles, 29139159, doi:10.1002/2013GB004795.

 

重要研究與突破

  • 以區域模式進行動力降尺度,用高解析度模式推估全球暖化2°C及4 °C情境下,臺灣地區極端溫度及空氣品質的變化情況,並更進一步討論增溫導致的臭氧變化對作物生長的影響。 磨擬結果顯示(a) 都市地區增溫的反應比森林地區更快速,(2) 增溫造成臺灣地區冬季盛行風及局部環流減弱,增加高污染日數,以及(3) 全球增溫會降低作物的產量,在2°C情境下主要是因為臭氧增加,在4°C情境則主要由於溫度上升導致 (Tsai et al., 2022a,b)。
  • 結合區域模式與觀測資料,探討2015-2017年金門起霧事件的綜觀環境特徵以及氣膠對霧滴微物理性質的影響。模擬結果顯示高污染環境下的霧滴微物理特性包括霧滴粒徑以及液態水量,都與觀測結果相近,顯示此區霧滴受氣膠影響明顯。敏感度測試顯示氣膠可反射較多短波輻射,造成濕冷的底層大氣進而形成濃霧。進一步分析能見度及霧滴微物理性質的年際變化,發現兩者與Nino3.4指數相關性高,但僅有三年的觀測資料長度不足,建議未來應持續進行長期的觀測 (Tsai et al., 2021a)。
  • 應用卷積神經網路之視覺式交通分析系統,分析大台北地區交通局即時路況影像,得到高時間解析度(5分鐘)的車流量、車種、車速資料,應用於改善排放清單裡的排放量日夜變化,從區域大氣化學模式CMAQ模擬結果顯示,對CO及PM2.5表現改進可達10─15%,而本研究所建立的「交通局即時影像-污染物排放量-改進空氣污染模式」流程,可以應用在特殊事件(例如COVID─19疫情或者連續假日的空品模式)空氣品質預報,快速應變突發事件 (Tsai et al., 2021b)
  • 發展區域大氣同位素模式,討論同位素分化過程的影響因子,並利用同位素模式討論鋒面系統的水循環。敏感度測試及模擬結果顯示,鋒面系統裡的同位素分化過程並非平衡過程,不能僅以傳統熱力平衡法處理之,需以氣體動立法方式計算以減少誤差。另外由敏感度測試顯示下邊界及側邊界對同位素含量的影響明顯,需要更多觀測資料做為邊界資料的參考 (Tsai et al., 2019)。
  • 分析地球系統模式CESM百年模擬結果,討論氣膠及溫室氣體對東亞地區夏季季風的影響,模擬結果顯示1980年代至1990年代所增加的人為源氣膠,可導致200hPa噴流南移,使夏季季風減弱,而若將溫室氣體的變化也考慮進來,雖然全球平均溫度上升,但氣膠造成東亞夏季季風減弱的現象,仍然存在(Tsai et al., 2016)。
  • 改進美國環保署發展之區域空氣品質模式CMAQ中二次有機氣膠產生機制,並搭配中研院環變中心於台北市都會區與郊區進行之採樣觀測資料,瞭解台北地區夏季有機氣膠生成及傳送機制。由一週的模擬及觀測資料顯示,液相化學反應機制對台北地區二次有機氣膠濃度貢獻超過50%,而綜觀環境、局部環流及邊界層高度等條件,對有機氣膠傳送及日夜變化有很大影響(Tsai et al., 2015a)。
  • 應用SNAP參數法,發展不同種類氣膠因碰撞而混合的機制,加入區域空氣品質模式CMAQ,討論沙塵事件期間,氣膠經碰撞混合的機制變成內在混合後,可改變氣膠質量、數量及表面積的時空分布特徵、降低單次散射反照率(SSA)、增加氣膠作為雲凝結核的能力以及在不同溫度區間,增加或減少其作為冰核的能力(Tsai et al., 2015b)。
 
  • (02) 2787-5935

  • ictsai

  • ACCRL

研究人員登入