
研究興趣
氣膠微物理參數法的發展與應用、氣膠與雲交互作用、氣候與化學交互作用、雲物理與大氣物理化學
代表著作
Tsai, I-C., S.-W. Yang, C.-J. Shiu, Y.-Y. Chen, C.-A. Chen, W.-L. Lee, and H.-H. Hsu, 2024: Aerosol Impacts on the East Asian Winter Monsoon: Insights from TaiESM1 and CMIP6 Simulations. International Journal of Climatology, 44(9), 2816–2832. https://doi.org/10.1002/joc.8483
Tsai, I-C., P.-R. Hsieh, H.-H. Hsu, Y.-S. Tung, Y.-M. Chen, and C.-T. Cheng, 2024a: Climate Change-induced Impact on PM2.5 in Taiwan under 2 and 4 °C Global Warming. Atmospheric Pollution Research, 15(6), 120106, https://doi.org/10.1016/j.apr.2024.102106.
Wu, C.-H., S.-Y. Lee, I-C. Tsai, C.-J. Shiu, Y.-Y. Chen, 2023: Volcanic contribution to the 1990s North Pacific climate shift in winter. Scientific Reports, 13 (1), 5672.
Wu, C.-H., C.-J. Shiu, Y.-Y. Chen, I-C. Tsai, S.-Y. Lee, 2023: Climatological changes in East Asian winter monsoon circulation in a warmer future, Atmospheric Research, 284, 106593, https://doi.org/10.1016/j.atmosres.2022.106593.
Tsai, I-C., L.-S. Shu, J.-P. Chen, P.-R. Hsieh, and C.-T. Cheng, 2022: Projecting ozone impact on crop yield in Taiwan under climate warming. Science of the Total Environment, 846(2022), 157437, https://doi.org/10.1016/j.scitotenv.2022.157437.
S.-Y. Lee, S.-C. C. Lung, P.-G. Chiu, W.-C. Wang, I-C. Tsai, T.-H. Lin, 2022: Northern hemisphere urban heat stress and associated labor hour hazard from ERA5 reanalysis. Int. J. Environ. Res. Public Health. 2022, 19, 8163. https://doi.org/10.3390/ijerph19138163
Tsai, I-C.*, P.-R. Hsieh, H. C. Cheung, and C. C.-K. Chou, 2021: Aerosol impacts on fog microphysics over the western side of Taiwan Strait in April from 2015 to 2017, Atmospheric Environment, 118523,
Tsai, I-C.*, C.-Y. Lee, S.-C. C. Lung, C.-W. Su, 2021: Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality, Science of the Total Environment, 782(2021), 146571, ISSN 0048-9697.
Lee, W.-L., Y.-C. Wang, C.-J. Shiu, I-C. Tsai, C.-Y. Tu, Y.-Y. Lan, J.-P. Chen, H.-L. Pan, and H.-H. Hsu, 2020: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904.
Zhang, L., T.-M. Fu, H. Tian, Y. Ma, J.-P. Chen, T.-C. Tsai, I-C. Tsai, Z. Meng, X. Yang. 2020: Anthropogenic Aerosols Significantly Reduce Mesoscale Convective System Occurrences and Precipitation over Southern China in April, Geophysical Research Letters. 47, e2019GL086204.
Wu, C.-H., I-C. Tsai, P.-C. Tsai and Y.-S. Tung, 2019: Large-Scale Seasonal Control of Air Quality in Taiwan, Atmospheric Environment, 214, 116868.
Huang C.-C., S.-H. Chen, Y.-C. Lin, K. Earl, T. Matsui, H.-H. Lee, I-C. Tsai, J.-P. Chen, C.-T. Cheng, 2019: Impacts of Dust-Radiation versus Dust-Cloud Interactions on the Development of a Modeled Mesoscale Convective System over North Africa. Monthly Weather Review, 147, 3301–3326.
Tsai, I-C.*, W.-Y. Chen, J.-P. Chen, and M.-C. Liang, 2019: Kinetic mass-transfer calculation of water isotope fractionation due to cloud microphysics in a regional meteorological model, Atmos. Chem. Phys., 19, 1753-1766.
重要研究與突破
本研究透過高解析度模擬評估氣候變遷對臺灣的影響,首先,我們觀察到都市地區的熱浪發生次數增加速度顯著快於其他地區,突顯出都市地區的高脆弱性,而森林地區則相對不易受到全球變暖的影響。其次,氣候變遷導致臺灣近地表風速減弱,進而增加空氣污染日數。最後,我們發現隨著氣候變暖,主要農作物如小麥、番茄和馬鈴薯的相對產量有所下降,並且在氣溫上升2°C情境下,臭氧引發的作物減產影響尤為明顯。然而,在4°C升溫的情境下,高溫的直接影響對作物產量的減少更具主導性。這些結果突顯了氣候變遷對臺灣環境及農業的多重影響,強調了制定針對性緩解和適應策略的必要性。(Tsai et al., 2022, 2023, 2024a)
本研究聚焦於大台北都會區,透過整合網路交通數據和基於影像的交通分析系統,以精細化交通排放清單。研究結果顯示,轎車和機車約佔總交通量的90%,且空間分佈呈現顯著差異:轎車多集中於郊區,而機車則在都市和近郊區域佔優勢。我們也發現平日和週末的交通模式差異顯著。此研究結果提升了空氣品質模式對一氧化碳與懸浮微粒濃度的掌握能力。此研究填補了關於機車交通時空分佈之文獻空缺,並指出不同車輛類型對空氣品質的影響,強調精細化交通數據整合有助於發展更有效的城市空氣品質管理策略。(Tsai et al., 2021b, 2024c)
經過再分析數據和觀測資料的驗證,臺灣地球系統模式(TaiESM)展現了對大尺度環流和降水的精確模擬能力,在CMIP6計畫中獲得認可,具備穩健的氣候狀態與近地表氣膠濃度表現。在Tsai等(2024b)中,透過TaiESM模擬結果,進一步研究氣膠對冬季亞洲季風的影響。結果顯示,人為氣膠會減弱阿留申低壓並增強西伯利亞高壓的強度,導致東亞冬季季風在低層大氣中於溫帶區域減弱。熱帶降雨帶向南移動,代表當地環流變化,並造成南亞地區降水減少。